Computistics versus Phantom Time Thesis

Does the Computus Paschalis lead the phantom time thesis ad absurdum?

Karl-Heinz Lewin

At the Zeitensprünge annual meeting in Zurich (05.-08.05.2005) Ulrich Voigt astonished, after a detailed presentation of the late antique computistics and their calculations of the Easter cycles, the present guests with the statement that the agreement of the calculation method of Dionysius Exiguus (calculated in the era "ab incarnatione Domini", "a. i.D") with the calculation method used since the Middle Ages (calculated in the era "after Christ's birth") allows either only 0 or 532 inserted phantom years. Since 532 phantom years are indisputable (the year 1000 would correspond then to the year 468), there could have been no phantom time. [Voigt 2005a; see also Voigt 2005b in the magazine ZS 17 (2)]

A truly hard chunk for Zeitensprünge friends: If Voigt's assertion holds, this would force to have to fill the centuries laboriously purged in the last 16 years of fictitious Karls, fictitious Tassilos, doubled Alphonses, fictitious Vikings, Madjars doubled to late Avars etc. again with archaeologically not verifiable history!

In two in-depth conversations with Ulrich Voigt, I learned detailed reasons for his statement:

Therefore the year 532 a.i.D. (Dionysius Exiguus) == 532 CE.4


Detailed evidence and critical assessment

In the following, the author retraces Voigt's argumentation and elaborates it in such detail that possible conclusions become obvious.

Let us assume that when King Otto III and Pope Sylvester introduced the modern calendar, N phantom years had been inserted. Then the following problems arise:

For example, an insertion of 291 or 297 years would result in the following discrepancies in the weekdays of March 21 (for the calculation see [Voigt 2003, 19-35]):6


 N÷28 remainder 11 

 N÷28 remainder 17 

 Year old 

 Day 

 Year new 

 Day 

 Year old 

 Day 

 Year new 

 Day 

708 

Wed 

999 

Tue 

702 

Tue 

999 

Tue 

709 

Thu 

1000 

Thu 

703 

Wed 

1000 

Thu 

710 

Fri 

1001 

Fri 

704 

Fri 

1001 

Fri 

711 

Sat 

1002 

Sat 

705 

Sat 

1002 

Sat 

The deviations by one weekday shown in red bold italics would repeat every four years. It is also possible to subtract or add 28 from the year numbers chosen as an example in each column without changing anything in the other data.

Here, it does not matter whether the years of the “old counting” were counted in the specified counting or in another era.

The lunar cycle now plays a role insofar as it is decisive for the earliest possible Easter date. Its influence is, so to speak, somewhat leveled, however, by the weekdays to be waited up to the following Sunday in each case. With an insertion of 297 years, however, the dates of the “old” calendar do not fit in any case with those of the “new” one:


 Year old 

 Easter Moon 

 Easter Sunday 

 Year new 

 Easter Moon 

 Easter Sunday 

702 

17.4. 

23.4. 

999 

4.4. 

9.4. 

703 

5.4. 

8.4. 

1000 

24.3. 

31.3. 

704 

25.3. 

30.3. 

1001 

12.4. 

13.4. 

705 

13.4. 

19.4. 

1002 

1.4. 

5.4. 

706 

2.4. 

4.4. 

1003 

21.3. 

28.3. 

Furthermore, 8.4.1000 is a Monday.

Let’s assume that the exact date of the Easter moon doesn’t matter at all, that its calculated date may well be one to three days earlier or later, as long as the Easter date calculated from it matches in both calendars. Perhaps one must work for the “new” calendar only with new tables, in order to receive the “correct” Easter date? Unfortunately, this hope cannot be confirmed. The best correspondences with the years important for the new year counting provide the following year numbers:


 Year 

 Easter 

 Year 

 Easter 

 Year 

 Easter 

 Year 

 Easter 

 999 

 9.4 

 904 

 8.4. 

 635 

 9.4. 

 551 

 9.4. 

 1000 

 31.3. 

 905 

 31.3. 

 636 

 31.3. 

 552 

 31.3. 

 1001 

 13.4. 

 906 

 13.4. 

 637 

 20.4. 

 553 

 20.4. 

 1002 

 5.4. 

 907 

 5.4. 

 638 

 5.4. 

 554 

 5.4. 

 1003 

 28.3. 

 908 

 27.3. 

 639 

 28.3. 

 555 

 28.3. 

 1004 

 16.4. 

 909 

 16.4. 

 640 

 16.4. 

 556 

 16.4. 

 1005 

 1.4. 

 910 

 1.4. 

 641 

 8.4. 

 557 

 1.4. 

However, there are still the years starting from 467, whose dates correspond continuously with those of the years starting from 999 ...

This proof is based on assumptions as presuppositions, which I will discuss in the following. I classify them in advance under the headings “Self-evident prerequisites” and “Assumptions worthy of discussion”. Under the former I subsume those assumptions which seem to me personally unquestionable, but which I nevertheless want to name explicitly in order to leave them open to criticism. The second contains assumptions for which it is questioned whether they may be taken for granted as facts.



Fig.1: Copper engraving of the calendar stone in Henricus Noris’
Dissertatio de latinorum paschali cyclo 1691, taken from [Voigt 2003, 114].7


Self-evident prerequisites

  1. When the modern calendar was introduced, the days of the week ran unchanged: A Monday was followed by a Tuesday, etc.

  2. The months and their respective durations were already firmly established when the modern calendar was introduced: January 1 in the “old” calendar was January 1 in the “new” calendar, etc. up to and including December 31.

  3. The introduction of the new yearly counting obviously did not lead to renewed controversies (“Easter controversy”) about the date of Easter.


Assumptions worthy of discussion

  1. Leap years were the same in both eras.

  1. The calendar stone in Ravenna was made in the 6th century (first half).

  1. The calendar stone really says what is claimed: an Easter cycle that coincides with the later Easter calculation.

Therefore, I will now turn to the examination of the calendar stone (see Fig.1 and 2).



Fig.2: Calendar stone (“Calendario Liturgico”) in the Museo Arcivescovile at Ravenna
[Photo found on the Internet on 19.11.2017, source can no longer be found in 2023]


Reading of the calendar stone


 Sector 1 

 Sector 2 

 Sector 3 

 Sector 4 

 LU XↅI 

 LU XↅII 

 LU XↅIII 

 LU PRI†MUS 

 AN I LU XIIII NO AP 

 AN II L XIIII ↅII K AP 

 AN III L XIIII ID APR 

 AN IIII L XIIII IIII NO AP 

 PAS III ID AP LU XX 

 PAS VI K AP LU Xↅ 

 PA Xↅ K MI LU XↅI 

 PA VI ID AP LU XX 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 V ID AP LU   XVIII 

 PD K AP LU XX 

 XII K MI L XXI 

 NO AP LU XↅI 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 ↅII ID AP 

 IIII K APR 

 XV K MI 

 V ID APR 

 LU XV 

 LU XↅII 

 LU XↅII 

 LU XXI 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 IIII ID AP 

 ↅI K AP 

 XↅI K MI 

 ↅII ID AP 

 LU XↅIII 

 LU XV 

 LU Xↅ 

 LU XↅII 

 CY V PA 

 CY V PA 

 CY V PA 

 CY V PA 

 ↅI ID AP 

 III K AP 

 XIII K MI 

 PD N AP 

 L Xↅ 

 L XↅIII 

 L XX 

 L Xↅ 

 CM 

 CM 

 EB 

 CM 


 Sector 5 

 Sector 6 

 Sector 7 

 Sector 8 

 LU II 

 LU III 

 LU IIII 

 LU V 

 AN V L XIIII XI K AP 

 AN VI L XIIII IIII ID AP 

 AN ↅI L XIIII III K AP 

 AN ↅII L XIIII XIIII K MI 

 PA X K AP LU XV 

 PA PR ID AP LU Xↅ 

 PA PD NO AP L XↅIII 

 PA ↅII K MI LU XX 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 V K AP LU XX 

 Xↅ K MI LU XX 

 K AP LU Xↅ 

 XI K MI LU XↅI 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 VIII K APR 

 XↅII K MI 

 NO APR 

 VII K MI 

 LU XVII 

 LU XↅII 

 LU XX 

 LU XXI 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 IIII K AP 

 III ID APR 

 III NO AP 

 X K MI 

 LU XXI 

 LU XV 

 LU XↅII 

 LU XↅII 

 CY V PA 

 CY V PA 

 CY V PA 

 CY V PA 

 ↅI K AP 

 XↅI K MI 

 PD K AP 

 XII K MI 

 L XↅII 

 L XↅIII 

 L XV 

 L Xↅ 

 CM 

 EB 

 CM 

 EB 


 Sector 9 

 Sector 10 

 Sector 11 

 Sector 12 

 LU ↅ 

 LU ↅI 

 LU ↅII 

 LU ↅIII 

 AN ↅIII L XIIII ↅI ID AP 

 AN X L XIIII VI K AP 

 AN XI L XIIII XↅI K MI 

 AN XII L XIIII PD NO AP 

 PA ↅ ID AP LU XV 

 PA PD K AP LU XↅII 

 PA XII K MI LU XↅIII 

 PA NO AP LU XV 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 ID AP LU XX 

 V K AP LU XV 

 XV K MI LU Xↅ 

 V ID AP L XↅIII 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 IIII ID APR 

 IIII NO AP 

 XI K MI 

 ↅII ID APR 

 LU XↅI 

 LU XX 

 LU XX 

 LU XↅI 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 XↅII K MI 

 III K AP 

 XIII K MI 

 IIII ID AP 

 LU XXI 

 LU XↅI 

 LU XↅII 

 LU XX 

 CY V PA 

 CY V PA 

 CY V PA 

 CY V PA 

 III ID AP 

 III N AP 

 Xↅ K MI 

 ↅ ID AP 

 L XↅIII 

 LU XXI 

 L XV 

 L XↅII 

 CM 

 CM 

 EB 

 CM 


 Sector 13 

 Sector 14 

 Sector 15 

 Sector 16 

 LU X 

 LU XI 

 LU XII 

 LU XIII 

 AN XIII L XIIII ↅIII K AP 

 AN XIIII L XIIII PD ID AP 

 AN XV L XIIII K AP 

 AN Xↅ L XIIII XII K AP 

 PA ↅ K AP LU XↅI 

 PA Xↅ K MI LU XↅII 

 PA VI ID AP LU XXI 

 PA VIIII K AP L XↅI 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 VIII K AP LU XV 

 ID AP LU XV 

 NO AP LU XↅII 

 V K AP LU XXI 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 IIII K APR 

 XIIII K MI 

 IIII NO APR 

 ↅII K APR 

 LUXↅIII 

 LU XX 

 LU XV 

 LU XↅII 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 ↅI K AP 

 XↅI K MI 

 ↅI ID AP 

 XI K AP 

 LU Xↅ 

 LU XↅI 

 LU XX 

 LU XV 

 CY V PA 

 CY V PA 

 CY V PA 

 CY V PA 

 III K AP 

 XIII K MI 

 PD N AP 

ↅ  K AP 

 L XX 

 L XXI 

 L XↅI 

 L XX 

 CM 

 EB 

 CM 

 CM 


 Sector 17 

 Sector 18 

 Sector 19 

 LU XIIII 

 LU XV 

 LU Xↅ 

 AN XↅI L XIIII V ID AP 

 AN XↅII L XIIII IIII K AP 

 AN XↅIII L XIIII XV K MI 

 PA PD ID AP LU XↅI 

 PA PD NO AP LU XX 

 PA ↅII K MI LU XXI 

 CY II PAS 

 CY II PAS 

 CY II PAS 

 IIII ID AP L XV 

 K AP LU XↅI 

 XI K MI LU XↅII 

 CY III PAS 

 CY III PAS 

 CY III PAS 

 XↅII K MI 

 III K APR 

 XIIII K MI 

 LU XↅIII 

 LU XV 

 LU XV 

 CY IIII PA 

 CY IIII PA 

 CY IIII PA 

 III ID AP 

 III NO AP 

 ↅIII K MI 

 LU Xↅ 

 LU XↅIII 

 LU XX 

 CY V PA 

 CY V PA 

 CY V PA 

 XↅI K MI 

 PD K AP 

 XII K MI 

 L XX 

 L Xↅ 

 L XↅI 

 EB 

 CM 

 EB 

The reading was taken sector and line by line from the copper engraving in Dissertatio de latinorum paschali cyclo [Noris, cited after Voigt 2003], for lack of a complete illustration of the original (Fig. 1), a comparison with the section of the calendar stone illustrated in [Voigt 2003, 113], which shows at least three sectors completely and two further sectors approximately halfway, did not show any deviations. I was able to verify the data personally by eye in Ravenna in 2006.

The reading begins with the Sector marked with a small cross as Sector 1, which is also referred to in the original by the large cross in the center.

Striking is the use of the numeral sign ↅ (Unicode character U+2185, late Roman six, probably originating from the Greek letter and numeral sign digamma, stigma or episemon) instead of “VI”, “Xↅ” instead of “XVI”, “XↅI” instead of “XVII” etc. (however only predominantly, not consistently, as the “XVIII” in Sector 1, line 5 shows). Pridie, the day before, is written once as PR (Sector 6, line 3), otherwise as PD (cf. Sector 7, right next to it).



Fig.3: Calendar stone,
Detail from Sector
12 [Photo KHL 2006]







Fig.4: Calendar stone,
Detail from Sector
10 [Photo KHL 2006]


Fig.5: Calendar stone,
Detail from Sector
16 [Photo KHL 2006]

Anticipating the interpretation, it should be noted that the entry in Sector 12, Cycle 3 (cf. Fig. 3), highlighted above with a yellow background, is incorrect. According to the Julian calendar it must read either “ↅII ID APR LU Xↅ” (6.4. Moon 16) or “ↅI ID APR LU XↅI” (7.4. Moon 17). In Sector 10, Cycle 5 (highlighted with cyan above) the “I” of “LU XXI” (3.4. Moon 21) is only faintly visible on the stone – apparently a correction (cf. Fig. 4) – and is probably therefore missing in the engraving. Since these are not systematic errors and the Easter dates will prove to be consistent, I assume that in the first case it is a “printing error” of the stonemason in indicating the lunar day (for the meaning see below), in the second case a “reading error” of the engraver, just as the spelling “CII” instead of the meant “ↅII” in line 7 of Sector 16, whereby the hook of the “ↅ” on the stone (Fig. 5) is only recognizable as a very short tick.


Interpretation of the calendar stone

The following information can be found in each of the 19 sectors:

Heading (sector 9 only): The meaning of “DIVISIO CYCLI II” at this point is unclear to me.

Line 1: Lunar year of the 19-year lunar cycle. The cycle begins with the lunar year 17; this corresponds to a Byzantine counting[Voigt, personal communication], but the number has no meaning for the further interpretation.

Line 2: Year number of the first 19-year cycle in the 95-year cycle and date of the Easter full moon (Luna 14). The year number is at the same time the “golden number” (= year number mod 19 + 1). The “Year 1” (AN I) represents therefore the Julian year in the used era modulo 532 + 1, so it can mean the year 532 of the “Era of Christ”, as Noris writes (see fig. 1), or the year 0 (!), that would mean the year 1 before the beginning of the era (1 B.C.), or also the years 1064, 1596 ...

The Easter full moon is the calculated spring full moon.9 Its date repeats every 19 years, so it is valid for the whole sector.

Line 3: Easter date and lunar day of Easter (in the first 19-year cycle). The lunar day is the consecutive day number in the lunar month.

Lines 4 and 5: Easter date and lunar day of Easter in the 2nd 19-year cycle.

Lines 6 to 8: Easter date and lunar day of Easter in the 3rd 19-year cycle.

Lines 9 to 11: Easter date and lunar day of Easter in the 4th 19-year cycle.

Lines 12 to 14: Easter date and lunar day of Easter in the 5th 19-year cycle.

Line 15: Indication whether the lunar year in question is a leap year (“EB” for “annus embolismalis”, a year with 13 lunar months.) or a normal year (“CM” for “anno communis”, a year with 12 lunar months). (This has nothing to do with the Julian leap years – solar years).


Conversion to modern dates

To convert the dates, I use the following small table for the relevant time period so that I don’t need to know all the intricacies of the calendar calculation:


 Modern 

 Antique 

 Modern 

 Antique 

 21 March 

 XII Kalendae Aprilis 

 8 April 

 VI Idus Aprilis 

 22 March 

 XI Kalendae Aprilis 

 9 April 

 V Idus Aprilis 

 23 March 

 X Kalendae Aprilis 

 10 April 

 IIII Idus Aprilis 

 24 March 

 IX Kalendae Aprilis 

 11 April 

 III Idus Aprilis 

 25 March 

 VIII Kalendae Aprilis 

 12 April 

 Pridie Idus Aprilis 

 26 March 

 VII Kalendae Aprilis 

 13 April 

 Idus Aprilis 

 27 March 

 VI Kalendae Aprilis 

 14 April 

 XVIII Kalendae Maii 

 28 March 

 V Kalendae Aprilis 

 15 April 

 XVII Kalendae Maii 

 29 March 

 IIII Kalendae Aprilis 

 16 April 

 XVI Kalendae Maii 

 30 March 

 III Kalendae Aprilis 

 17 April 

 XV Kalendae Maii 

 31 March 

 Pridie Kalendae Aprilis 

 18 April 

 XIIII Kalendae Maii 

 1 April 

 Kalendae Aprilis 

 19 April 

 XIII Kalendae Maii 

 2 April 

 IIII Nonae Aprilis 

 20 April 

 XII Kalendae Maii 

 3 April 

 III Nonae Aprilis 

 21 April 

 XI Kalendae Maii 

 4 April 

 Pridie Nonae Aprilis 

 22 April 

 X Kalendae Maii 

 5 April 

 Nonae Aprilis 

 23 April 

 IX Kalendae Maii 

 6 April 

 VIII Idus Aprilis 

 24 April 

 VIII Kalendae Maii 

 7 April 

 VII Idus Aprilis 

 25 April 

 VII Kalendae Maii 

This gives us the following table, whose rows correspond to the sectors of the calendar stone:

 Lunar year  

 Year 

 Easter moon 

 1st cycle 

 2nd cycle 

 3rd cycle  

 4th cycle 

 5th cycle 

 17 

 1 

 5.4. 

 11.4. 

 20 

 9.4. 

 18 

 6.4. 

 15 

 10.4. 

 19 

 7.4. 

 16 

 18 

 2 

 25.3. 

 27.3 

 16 

 31.3. 

 20 

 29.3. 

 18 

 26.3. 

 15 

 30.3. 

 19 

 19  

 3 (L) 

 13.4. 

 16.4. 

 17 

 20.4 

 21 

 17.4. 

 18 

 15.4. 

 16 

 19.4. 

 20 

 1 

 4 

 2.4. 

 8.4. 

 20 

 5.4. 

 17 

 9.4. 

 21 

 6.4. 

 18 

 4.4. 

 16 

 2 

 5 

 22.3. 

 23.3. 

 15 

 28.3. 

 20 

 25.3. 

 17 

 29.3. 

 21 

 26.3. 

 18 

 3  

 6 (L) 

 10.4. 

 12.4. 

 16 

 16.4. 

 20 

 14.4. 

 18 

 11.4. 

 15 

 15.4. 

 19 

 4 

 7 

 30.3. 

 4.4. 

 19 

 1.4. 

 16 

 5.4. 

 20 

 3.4. 

 18 

 31.3. 

 15 

 5  

 8 (L) 

 18.4. 

 24.4. 

 20 

 21.4. 

 17 

 25.4. 

 21 

 22.4. 

 18 

 20.4. 

 16 

 6 

 9 

 7.4. 

 8.4. 

 15 

 13.4. 

 20 

 10.4. 

 17 

 14.4. 

 21 

 11.4. 

 18 

 7 

 10 

 27.3. 

 31.3. 

 18 

 28.3. 

 15 

 2.4. 

 20 

 30.3. 

 17 

 3.4. 

 21 

 8  

 11 (L) 

 15.4. 

 20.4. 

 19 

 17.4. 

 16 

 21.4. 

 20 

 19.4. 

 18 

 16.4. 

 15 

 9 

 12 

 4.4. 

 5.4. 

 15 

 9.4. 

 19 

 6.4. 

 17/16 

 10.4. 

 20 

 8.4. 

 18 

 10 

 13 

 24.3. 

 27.3. 

 17 

 25.3. 

 15 

 29.3. 

 19 

 26.3. 

 16 

 30.3. 

 20 

 11 

 14 (L) 

 12.4. 

 16.4. 

 18 

 13.4. 

 15 

 18.4. 

 20 

 15.4. 

 17 

 19.4. 

 21 

 12 

 15 

 1.4. 

 8.4. 

 21 

 5.4. 

 18 

 2.4. 

 15 

 7.4. 

 20 

 4.4. 

 17 

 13 

 16 

 21.3. 

 24.3. 

 17 

 28.3. 

 21 

 25.3. 

 18 

 22.3. 

 15 

 27.3. 

 20 

 14  

 17 (L) 

 9.4. 

 12.4. 

 17 

 10.4. 

 15 

 14.4. 

 19 

 11.4. 

 16 

 15.4. 

 20 

 15 

 18 

 29.3. 

 4.4. 

 20 

 1.4. 

 17 

 30.3. 

 15 

 3.4. 

 19 

 31.3. 

 16 

 16  

 19 (L) 

 17.4. 

 24.4. 

 21 

 21.4. 

 18 

 18.4. 

 15 

 23.4. 

 20 

 20.4. 

 17

The indication of the lunar leap year was taken from the last line of the original as “(L)” into the second column.

For each of the five cycles the Easter date and the lunar day are listed. The entry with two values for the lunar days (17/16 in year 12 of the 3rd cycle) shows as first value the incorrect value taken over from the calendar stone and after the slash the correct one (cf. fig. 3 and the assessment above).


Verification of the data

“According to tradition, the 3rd, 6th, 8th, 11th, 14th, 17th and 19th years of the lunar cycle are leap years and have 13 lunar months each.” [Metz, transl. DeepL]. The aforementioned (Alexandrian) tradition thus counted the lunar years in the same way as the Dionysian AN(no) count and not according to the Byzantine LU(na) count.

The date of the Easter Moon is simply calculated from the Golden Number (=year in column 2):

OM = 21 + GN; if OM <= 31, then OM is the date in March, otherwise OM − 31 is the date in April.

The calculation of the Easter date is a little more complicated. [Voigt 2003] gives detailed instructions on how to calculate the date of Easter in one’s head (!). However, I am a mathematician and therefore avoid calculating as much as possible. Moreover, as a software developer, I prefer to leave the calculating to the machines and have therefore transferred Voigt’s formulas into a spreadsheet programme, which thereby confirmed all Easter dates in the above table.

To make sure that this is the correct calculation, I ran two more spreadsheets with the algorithms described by [Knuth] and the German [wikipedia] (search “Osterdatum”), with consistent results: The Easter dates of the calendar stone are correct and agree with our calendar exactly when the 1st year on this stone (AN I) is the year 0 or 532 or another multiple of 532.

The algorithm from German Wikipedia (as of 2004-06-24 and 2005-12-20) was the shortest and is best suited for both programmable calculators and spreadsheet programmes. Here is the variant for the spreadsheet (with correction from 2024-02-28) :

A1:

Input field for the initial year number − 1

A2: =A1+1

the year number

B2: =MOD(A2;19)

this is the GN − 1 (“silver number” [Voigt 2003])

C2: =MOD((19*B2+15);30)

D2: =MOD((A2+INT(A2/4)+C2);7)

E2: =C2−D2

10

G2: =3+INT((E2+40)/44)

Easter month (therefore one column is skipped)

F2: =E2+28-31*INT(G2/4)

Easter day (back one column again)

If you want to check it yourself, you should copy line 2 into lines 3 to 97 and enter the number 531 in A1; then all the Easter dates from the above table will appear in columns E and F.


Conclusion

Voigt's claim cannot be refuted on the basis of the dates on the calendar stone. If this stone was indeed made in the 6th century, then the year 1 (AN I) depicted on it is firstly a year in the 6th century and secondly equal to the year 532 of our calendar.

It would only be different if it could be proven that this stone dates from the 11th century. (Then AN I = 1064.) Alas, this cannot be my task.

The proof, however, remains a mathematical one. Historically, it is a strong indication against a phantom time. On the other hand, there are numerous historical indications for a phantom period, as they have been shown in this journal ("Zeitensprünge") and other publications by the authors writing here. After studying Trier, the hometown of my school days, I myself can prove that neither building nor burial (and therefore no living) took place in Trier during the phantom period, and I will report on this.

But for the time being, it remains a mystery how times with no evidence can be reconciled with the mathematically correct assumption of a continuous yearly count since antiquity.



Footnotes

1   In contrast, the astronomical moon fluctuates by ±1 to max. ±2 days due to the irregularities of the moon's orbit. In addition, the astronomical moon takes slightly longer to orbit the earth. This error was only corrected with the Gregorian calendar reform.

2   The same applies to all other moon phases.

3   In the course of a 532-year cycle, Easter Sunday can fall on the same date up to 20 times [Bär, Osterstatistik]. However, the fact that four consecutive Easter Sundays (in the Julian calendar) fall on the same date only happens every 532 years.

4   Voigt refers to the era introduced by Dionysius Exiguus as “AD” [Voigt 2003 and Voigt 2005b passim]. This is to be distinguished from the same designation “AD” for the era “n. Chr.”, which has been in use since the Middle Ages and especially in English-language literature, at least until the identity of both eras is proven.

5   Why even fewer matches can be obtained for other remainders can be seen in the table in [Voigt 2000, 299].

6   formulaic: W={"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; w(Y) = W[(Y+Y÷4) mod 7] = W[5×Y÷4 mod 7], where Y denotes the year between 1 and 1582, and ÷ stands for the integer division that ignores the remainder, mod for the modulo operator that provides the division remainder of the integer division; X mod Y is defined as X − (X÷Y) × Y).

7   Voigt points out the changed orientation of the circle and the inner cross compared to the original.

8   Voigt writes the month names in Julian dates with small initial letters to distinguish them from Gregorian dates.

9   The astronomical full moon of spring can vary by ±1 to 2 days and, as a result of the inaccuracy of the calculation, comes later and later over the centuries. This error was only corrected with the Gregorian calendar reform.

10   E2 can become negative. This is why the ancient and medieval computists were denied this simple algorithm.



Literature

Bär, Nikolaus A.: Osterstatistik; http://www.nabkal.de/osterstatistiik.html

Knuth, Donald (1962): The Calculation of Easter; Communications of the ACM (CACM) Vol. 5 (4) 209

Lewin, Karl-Heinz (2005): Komputistik contra Phantomzeitthese. Führt der Computus Paschalis die Phantomzeitthese ad absurdum?; ZS 17 (2) 455-464; (22023): https://com-pas.de/computuspaschalis/1cyclopaschalisravenna.de.htm

Metz, Herbert (o.J.): Die Ostertafel aus dem Codex Zwettl. 255, Bl. 7V; http://www.computus.de/menton/osterkal.htm

Noris, Henricus (1691): Dissertatio de paschali latinorum cyclo, Ravenna (quoted from Voigt, 2003)

Voigt, Ulrich (2000): Zeitensprünge und Kalenderrechnung; ZS 12 (2) 206

Voigt, Ulrich (2003): Das Jahr im Kopf, Beiträge zur Mnemotechnik, Band 2; Likanas; Hamburg

Voigt, Ulrich (2005a): Thesen zur spätantiken Komputistik; Thesenpapier zum Zeitensprünge-Jahrestreffen in Zürich

Voigt, Ulrich (2005b): Über die christliche Jahreszählung, ZS 17 (2) 420-454

wikipedia (2005): Stichworte “Komputistik” und “Osterdatum”; https://de.wikipedia.org/wiki/Wikipedia:Hauptseite

ZS = Zeitensprünge (“Zeitensprünge”) – Interdisziplinäres Bulletin; Mantis Verlag Dr. Heribert Illig, Gräfelfing; http://www.zeitensprünge.de/?page_id=572


The author is a mathematician and worked as a software developer.

Karl-Heinz Lewin, Haar: Karl-Heinz.Lewin@t-online.de

Copyright © Karl-Heinz Lewin, 2005, 2023

First published in German in: Zeitensprünge 17 (2) 455-464

Copyright © Mantis Verlag Dr. Heribert Illig, 2005

Translated from an updated German version by DeepL with authoritative assistance by the author.