Sector 1 |
Sector 2 |
Sector 3 |
Sector 4 |
LU XↅI |
LU XↅII |
LU XↅIII |
LU PRI†MUS |
AN I LU XIIII NO AP |
AN II L XIIII ↅII K AP |
AN III L XIIII ID APR |
AN IIII L XIIII IIII NO AP |
PAS III ID AP LU XX |
PAS VI K AP LU Xↅ |
PA Xↅ K MI LU XↅI |
PA VI ID AP LU XX |
CY II PAS |
CY II PAS |
CY II PAS |
CY II PAS |
V ID AP LU XVIII |
PD K AP LU XX |
XII K MI L XXI |
NO AP LU XↅI |
CY III PAS |
CY III PAS |
CY III PAS |
CY III PAS |
ↅII ID AP |
IIII K APR |
XV K MI |
V ID APR |
LU XV |
LU XↅII |
LU XↅII |
LU XXI |
CY IIII PA |
CY IIII PA |
CY IIII PA |
CY IIII PA |
IIII ID AP |
ↅI K AP |
XↅI K MI |
ↅII ID AP |
LU XↅIII |
LU XV |
LU Xↅ |
LU XↅII |
CY V PA |
CY V PA |
CY V PA |
CY V PA |
ↅI ID AP |
III K AP |
XIII K MI |
PD N AP |
L Xↅ |
L XↅIII |
L XX |
L Xↅ |
CM |
CM |
EB |
CM |
Sector 5 |
Sector 6 |
Sector 7 |
Sector 8 |
LU II |
LU III |
LU IIII |
LU V |
AN V L XIIII XI K AP |
AN VI L XIIII IIII ID AP |
AN ↅI L XIIII III K AP |
AN ↅII L XIIII XIIII K MI |
PA X K AP LU XV |
PA PR ID AP LU Xↅ |
PA PD NO AP L XↅIII |
PA ↅII K MI LU XX |
CY II PAS |
CY II PAS |
CY II PAS |
CY II PAS |
V K AP LU XX |
Xↅ K MI LU XX |
K AP LU Xↅ |
XI K MI LU XↅI |
CY III PAS |
CY III PAS |
CY III PAS |
CY III PAS |
VIII K APR |
XↅII K MI |
NO APR |
VII K MI |
LU XVII |
LU XↅII |
LU XX |
LU XXI |
CY IIII PA |
CY IIII PA |
CY IIII PA |
CY IIII PA |
IIII K AP |
III ID APR |
III NO AP |
X K MI |
LU XXI |
LU XV |
LU XↅII |
LU XↅII |
CY V PA |
CY V PA |
CY V PA |
CY V PA |
ↅI K AP |
XↅI K MI |
PD K AP |
XII K MI |
L XↅII |
L XↅIII |
L XV |
L Xↅ |
CM |
EB |
CM |
EB |
Sector 9 |
Sector 10 |
Sector 11 |
Sector 12 |
LU ↅ |
LU ↅI |
LU ↅII |
LU ↅIII |
AN ↅIII L XIIII ↅI ID AP |
AN X L XIIII VI K AP |
AN XI L XIIII XↅI K MI |
AN XII L XIIII PD NO AP |
PA ↅ ID AP LU XV |
PA PD K AP LU XↅII |
PA XII K MI LU XↅIII |
PA NO AP LU XV |
CY II PAS |
CY II PAS |
CY II PAS |
CY II PAS |
ID AP LU XX |
V K AP LU XV |
XV K MI LU Xↅ |
V ID AP L XↅIII |
CY III PAS |
CY III PAS |
CY III PAS |
CY III PAS |
IIII ID APR |
IIII NO AP |
XI K MI |
ↅII ID APR |
LU XↅI |
LU XX |
LU XX |
LU XↅI |
CY IIII PA |
CY IIII PA |
CY IIII PA |
CY IIII PA |
XↅII K MI |
III K AP |
XIII K MI |
IIII ID AP |
LU XXI |
LU XↅI |
LU XↅII |
LU XX |
CY V PA |
CY V PA |
CY V PA |
CY V PA |
III ID AP |
III N AP |
Xↅ K MI |
ↅ ID AP |
L XↅIII |
LU XXI |
L XV |
L XↅII |
CM |
CM |
EB |
CM |
Sector 13 |
Sector 14 |
Sector 15 |
Sector 16 |
LU X |
LU XI |
LU XII |
LU XIII |
AN XIII L XIIII ↅIII K AP |
AN XIIII L XIIII PD ID AP |
AN XV L XIIII K AP |
AN Xↅ L XIIII XII K AP |
PA ↅ K AP LU XↅI |
PA Xↅ K MI LU XↅII |
PA VI ID AP LU XXI |
PA VIIII K AP L XↅI |
CY II PAS |
CY II PAS |
CY II PAS |
CY II PAS |
VIII K AP LU XV |
ID AP LU XV |
NO AP LU XↅII |
V K AP LU XXI |
CY III PAS |
CY III PAS |
CY III PAS |
CY III PAS |
IIII K APR |
XIIII K MI |
IIII NO APR |
ↅII K APR |
LUXↅIII |
LU XX |
LU XV |
LU XↅII |
CY IIII PA |
CY IIII PA |
CY IIII PA |
CY IIII PA |
ↅI K AP |
XↅI K MI |
ↅI ID AP |
XI K AP |
LU Xↅ |
LU XↅI |
LU XX |
LU XV |
CY V PA |
CY V PA |
CY V PA |
CY V PA |
III K AP |
XIII K MI |
PD N AP |
ↅ K AP |
L XX |
L XXI |
L XↅI |
L XX |
CM |
EB |
CM |
CM |
Sector 17 |
Sector 18 |
Sector 19 |
LU XIIII |
LU XV |
LU Xↅ |
AN XↅI L XIIII V ID AP |
AN XↅII L XIIII IIII K AP |
AN XↅIII L XIIII XV K MI |
PA PD ID AP LU XↅI |
PA PD NO AP LU XX |
PA ↅII K MI LU XXI |
CY II PAS |
CY II PAS |
CY II PAS |
IIII ID AP L XV |
K AP LU XↅI |
XI K MI LU XↅII |
CY III PAS |
CY III PAS |
CY III PAS |
XↅII K MI |
III K APR |
XIIII K MI |
LU XↅIII |
LU XV |
LU XV |
CY IIII PA |
CY IIII PA |
CY IIII PA |
III ID AP |
III NO AP |
ↅIII K MI |
LU Xↅ |
LU XↅIII |
LU XX |
CY V PA |
CY V PA |
CY V PA |
XↅI K MI |
PD K AP |
XII K MI |
L XX |
L Xↅ |
L XↅI |
EB |
CM |
EB |
The reading was taken sector by sector and line by line from the copper engraving in Dissertatio de latinorum paschali cyclo [Noris, cited after Voigt 2003], for lack of a complete illustration of the original (Fig. 1), a comparison with the section of the calendar stone illustrated in [Voigt 2003, 113], which shows at least three sectors completely and two further sectors approximately halfway, did not show any deviations. I was able to verify the data personally by eye in Ravenna in 2006.
The reading begins with the Sector marked with a small cross as Sector 1, which is also referred to in the original by the large cross in the center.
Striking is the use of the numeral sign ↅ (Unicode character U+2185, late Roman six, probably originating from the Greek letter and numeral sign digamma, stigma or episemon) instead of “VI”, “Xↅ” instead of “XVI”, “XↅI” instead of “XVII” etc. (however only predominantly, not consistently, as the “XVIII” in Sector 1, line 5 shows). Pridie, the day before, is written once as PR (Sector 6, line 3), otherwise as PD (cf. Sector 7, right next to it).
|
|
|
Anticipating the interpretation, it should be noted that the entry in Sector 12, Cycle 3 (cf. Fig. 3), highlighted above with a yellow background, is incorrect. According to the Julian calendar it must read either “ↅII ID APR LU Xↅ” (6.4. Moon 16) or “ↅI ID APR LU XↅI” (7.4. Moon 17). In Sector 10, Cycle 5 (highlighted with cyan above) the “I” of “LU XXI” (3.4. Moon 21) is only faintly visible on the stone – apparently a correction (cf. Fig. 4) – and is probably therefore missing in the engraving. Since these are not systematic errors and the Easter dates will prove to be consistent, I assume that in the first case it is a “printing error” of the stonemason in indicating the lunar day (for the meaning see below), in the second case a “reading error” of the engraver, just as the spelling “CII” instead of the meant “ↅII” in line 7 of Sector 16, whereby the hook of the “ↅ” on the stone (Fig. 5) is only recognizable as a very short tick.
In summary, we get the following table,
the rows of which correspond to the sectors of the Easter calendar stone:
LU |
AN |
LU XIIII |
CY I PAS |
LU |
CY II PAS |
LU |
CY III PAS |
LU |
CY IIII PAS |
LU |
CY V PAS |
LU |
EB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XↅI |
I |
NO AP |
III ID AP |
XX |
V ID AP |
XVIII |
ↅII ID AP |
XV |
IIII ID AP |
XↅIII |
ↅI ID AP |
Xↅ |
CM |
XↅII |
II |
ↅII K AP |
VI K AP |
Xↅ |
PD K AP |
XX |
IIII K APR |
XↅII |
ↅI K AP |
XV |
III K AP |
XↅIII |
CM |
XↅIII |
III |
ID APR |
Xↅ K MI |
XↅI |
XII K MI |
XXI |
XV K MI |
XↅII |
XↅI K MI |
Xↅ |
XIII K MI |
XX |
EB |
PRI†MUS |
IIII |
IIII NO AP |
VI ID AP |
XX |
NO AP |
XↅI |
V ID APR |
XXI |
ↅII ID AP |
XↅII |
PD N AP |
Xↅ |
CM |
II |
V |
XI K AP |
X K AP |
XV |
V K AP |
XX |
VIII K APR |
XVII |
IIII K AP |
XXI |
ↅI K AP |
XↅII |
CM |
III |
VI |
IIII ID AP |
PR ID AP |
Xↅ |
Xↅ K MI |
XX |
XↅII K MI |
XↅII |
III ID APR |
XV |
XↅI K MI |
XↅIII |
EB |
IIII |
ↅI |
III K AP |
PD NO AP |
XↅIII |
K AP |
Xↅ |
NO APR |
XX |
III NO AP |
XↅII |
PD K AP |
XV |
CM |
V |
ↅII |
XIIII K MI |
ↅII K MI |
XX |
XI K MI |
XↅI |
VII K MI |
XXI |
X K MI |
XↅII |
XII K MI |
Xↅ |
EB |
ↅ |
ↅIII |
ↅI ID AP |
ↅ ID AP |
XV |
ID AP |
XX |
IIII ID APR |
XↅI |
XↅII K MI |
XXI |
III ID AP |
XↅIII |
CM |
ↅI |
X |
VI K AP |
PD K AP |
XↅII |
V K AP |
XV |
IIII NO AP |
XX |
III K AP |
XↅI |
III N AP |
XXI |
CM |
ↅII |
XI |
XↅI K MI |
XII K MI |
XↅIII |
XV K MI |
Xↅ |
XI K MI |
XX |
XIII K MI |
XↅII |
Xↅ K MI |
XV |
EB |
ↅIII |
XII |
PD NO AP |
 NO AP |
XV |
V ID AP |
XↅIII |
ↅII ID APR |
XↅI/Xↅ |
IIII ID AP |
XX |
ↅ ID AP |
XↅII |
CM |
X |
XIII |
ↅIII K AP |
ↅ K AP |
XↅI |
VIII K AP |
XV |
IIII K APR |
XↅIII |
ↅI K AP |
Xↅ |
III K AP |
XX |
CM |
XI |
XIIII |
PD ID AP |
Xↅ K MI |
XↅII |
ID AP |
XV |
XIIII K MI |
XX |
XↅI K MI |
XↅI |
XIII K MI |
XXI |
EB |
XII |
XV |
K AP |
VI ID AP |
XXI |
NO AP |
XↅII |
IIII NO APR |
XV |
ↅI ID AP |
XX |
PD N AP |
XↅI |
CM |
XIII |
Xↅ |
XII K AP |
VIIII K AP |
XↅI |
V K AP |
XXI |
ↅII K APR |
XↅII |
XI K AP |
XV |
ↅ K AP |
XX |
CM |
XIIII |
XↅI |
V ID AP |
PD ID AP |
Xↅ |
IIII ID AP |
XV |
XↅII K MI |
XↅIII |
III ID AP |
Xↅ |
XↅI K MI |
XX |
EB |
XV |
XↅII |
IIII K AP |
PD NO AP |
XX |
K AP |
XↅI |
III K APR |
XV |
III NO AP |
XↅIII |
PD K AP |
Xↅ |
CM |
Xↅ |
XↅIII |
XV K MI |
ↅII K MI |
XXI |
XI K MI |
XↅII |
XIIII K MI |
XV |
ↅIII K MI |
XX |
XII K MI |
XↅI |
EB |
For each of the five cycles the Easter date and the lunar day are listed. The entry with two values for the lunar days (XↅI/Xↅ in year XII of cycle III) first shows the incorrect value taken over from the Easter calendar stone and after the slash the correct one (cf. Fig. 3 and the assessment on this above).
The following information can be found in each of the 19 sectors:
Heading (sector 9 only): The meaning of “DIVISIO CYCLI II” at this point is unclear to me.
Line 1: Lunar year of the 19-year lunar cycle. The cycle begins with the lunar year 17; this corresponds to a Byzantine counting [Voigt, personal communication], but the number has no meaning for the further interpretation.
Line 2: Year number of the first 19-year cycle in the 95-year cycle and date of the Easter full moon (Luna 14). The year number is at the same time the “golden number” (= year number mod 19 + 1). The “Year 1” (AN I) represents therefore the Julian year in the used era modulo 532 + 1, so it can mean the year 532 of the “Era of Christ”, as Noris writes (see fig. 1), or the year 0 (!), that would mean the year 1 before the beginning of the era (1 B.C.), or also the years 1064, 1596 ...
The Easter full moon is the calculated spring full moon.9 Its date repeats every 19 years, so it is valid for the whole sector.
Line 3: Easter date and lunar day of Easter (in the first 19-year cycle). The lunar day is the consecutive day number in the lunar month.
Lines 4 and 5: Easter date and lunar day of Easter in the 2nd 19-year cycle.
Lines 6 to 8: Easter date and lunar day of Easter in the 3rd 19-year cycle.
Lines 9 to 11: Easter date and lunar day of Easter in the 4th 19-year cycle.
Lines 12 to 14: Easter date and lunar day of Easter in the 5th 19-year cycle.
Line 15: Indication whether the lunar year in question is a leap year (“EB” for “annus embolismalis”, a year with 13 lunar months.) or a normal year (“CM” for “anno communis”, a year with 12 lunar months). (This has nothing to do with the Julian leap years – solar years).
*) The astronomical full moon in spring can fluctuate by ±1 to 2 days and, as a result of the inaccuracy of the calculation, comes later and later over the centuries. This error was only corrected with the Gregorian calendar reform.
To convert the dates, I use the following small table for the relevant time period so that I don’t need to know all the intricacies of the calendar calculation:
Modern |
Antique |
Modern |
Antique |
21 March |
XII Kalendae Aprilis |
8 April |
VI Idus Aprilis |
22 March |
XI Kalendae Aprilis |
9 April |
V Idus Aprilis |
23 March |
X Kalendae Aprilis |
10 April |
IIII Idus Aprilis |
24 March |
IX Kalendae Aprilis |
11 April |
III Idus Aprilis |
25 March |
VIII Kalendae Aprilis |
12 April |
Pridie Idus Aprilis |
26 March |
VII Kalendae Aprilis |
13 April |
Idus Aprilis |
27 March |
VI Kalendae Aprilis |
14 April |
XVIII Kalendae Maii |
28 March |
V Kalendae Aprilis |
15 April |
XVII Kalendae Maii |
29 March |
IIII Kalendae Aprilis |
16 April |
XVI Kalendae Maii |
30 March |
III Kalendae Aprilis |
17 April |
XV Kalendae Maii |
31 March |
Pridie Kalendae Aprilis |
18 April |
XIIII Kalendae Maii |
1 April |
Kalendae Aprilis |
19 April |
XIII Kalendae Maii |
2 April |
IIII Nonae Aprilis |
20 April |
XII Kalendae Maii |
3 April |
III Nonae Aprilis |
21 April |
XI Kalendae Maii |
4 April |
Pridie Nonae Aprilis |
22 April |
X Kalendae Maii |
5 April |
Nonae Aprilis |
23 April |
IX Kalendae Maii |
6 April |
VIII Idus Aprilis |
24 April |
VIII Kalendae Maii |
7 April |
VII Idus Aprilis |
25 April |
VII Kalendae Maii |
This gives us the following table,
whose rows correspond to the sectors of the calendar stone:
Lunar year |
Year |
Easter moon |
1st cycle |
2nd cycle |
3rd cycle |
4th cycle |
5th cycle |
|||||
17 |
1 |
5.4. |
11.4. |
20 |
9.4. |
18 |
6.4. |
15 |
10.4. |
19 |
7.4. |
16 |
18 |
2 |
25.3. |
27.3 |
16 |
31.3. |
20 |
29.3. |
18 |
26.3. |
15 |
30.3. |
19 |
19 |
3 (L) |
13.4. |
16.4. |
17 |
20.4 |
21 |
17.4. |
18 |
15.4. |
16 |
19.4. |
20 |
1 |
4 |
2.4. |
8.4. |
20 |
5.4. |
17 |
9.4. |
21 |
6.4. |
18 |
4.4. |
16 |
2 |
5 |
22.3. |
23.3. |
15 |
28.3. |
20 |
25.3. |
17 |
29.3. |
21 |
26.3. |
18 |
3 |
6 (L) |
10.4. |
12.4. |
16 |
16.4. |
20 |
14.4. |
18 |
11.4. |
15 |
15.4. |
19 |
4 |
7 |
30.3. |
4.4. |
19 |
1.4. |
16 |
5.4. |
20 |
3.4. |
18 |
31.3. |
15 |
5 |
8 (L) |
18.4. |
24.4. |
20 |
21.4. |
17 |
25.4. |
21 |
22.4. |
18 |
20.4. |
16 |
6 |
9 |
7.4. |
8.4. |
15 |
13.4. |
20 |
10.4. |
17 |
14.4. |
21 |
11.4. |
18 |
7 |
10 |
27.3. |
31.3. |
18 |
28.3. |
15 |
2.4. |
20 |
30.3. |
17 |
3.4. |
21 |
8 |
11 (L) |
15.4. |
20.4. |
19 |
17.4. |
16 |
21.4. |
20 |
19.4. |
18 |
16.4. |
15 |
9 |
12 |
4.4. |
5.4. |
15 |
9.4. |
19 |
6.4. |
17/16 |
10.4. |
20 |
8.4. |
18 |
10 |
13 |
24.3. |
27.3. |
17 |
25.3. |
15 |
29.3. |
19 |
26.3. |
16 |
30.3. |
20 |
11 |
14 (L) |
12.4. |
16.4. |
18 |
13.4. |
15 |
18.4. |
20 |
15.4. |
17 |
19.4. |
21 |
12 |
15 |
1.4. |
8.4. |
21 |
5.4. |
18 |
2.4. |
15 |
7.4. |
20 |
4.4. |
17 |
13 |
16 |
21.3. |
24.3. |
17 |
28.3. |
21 |
25.3. |
18 |
22.3. |
15 |
27.3. |
20 |
14 |
17 (L) |
9.4. |
12.4. |
17 |
10.4. |
15 |
14.4. |
19 |
11.4. |
16 |
15.4. |
20 |
15 |
18 |
29.3. |
4.4. |
20 |
1.4. |
17 |
30.3. |
15 |
3.4. |
19 |
31.3. |
16 |
16 |
19 (L) |
17.4. |
24.4. |
21 |
21.4. |
18 |
18.4. |
15 |
23.4. |
20 |
20.4. |
17 |
The indication of the lunar leap year was taken from the last line of the original as “(L)” into the second column.
For each of the five cycles the Easter date and the lunar day are listed. The entry with two values for the lunar days (17/16 in year 12 of the 3rd cycle) shows as first value the incorrect value taken over from the calendar stone and after the slash the correct one (cf. fig. 3 and the assessment on this above).
The Easter cycle of the Easter Calendar Stone begins with AN I LU XIV NO AP (annus I luna XIV nonae aprilis) [details see Lewin 2005, 22023]. The date corresponds to 5 April. In the following years (in the following sectors), the date of the Easter Moon is 11 days earlier or, if this would be before 21 March, 19 days later than the date of the previous year. This results in 19 Easter Moon dates in the total circle, which remain constant over all five cycles.
This is followed in each sector by the dates for Easter Sunday and the lunar day (the consecutive day number in the lunar month) for a total of five 19-year cycles. From the lunar day of Easter Sunday, the weekday of each date in the corresponding year can be deduced. The author of the Easter table, however, had to proceed in reverse: he first had to determine the weekday of a fixed date, deduce from this the weekday at the date of the Easter moon, and calculate or count the Easter date and the lunar day of the Easter date from the number of days until the next following Sunday.
The information on the lunar year in line 1 and the information on the lunar leap year in line 15 of each sector are not required for the calculation.
The year in line 2 is helpful for deducing the days of the week of other dates from knowing the day of the week of a date on the chart. If, starting from the date of the first Easter Sunday on the table, I determine the day of the week of a particular date, such as 21 March, in each year, I recognise that the years 1, 5, 9, 13, 17 in the 1st cycle, 2, 6, 10, 14, 18 in the 2nd cycle, 3, 7, 11, 15, 19 in the 3rd cycle, 4, 8, 12, 16 in the 4th cycle and again 1, 5, 9, 13, 17 in the 5th cycle are leap years in the Julian calendar. With this knowledge, I can use the algorithm outlined above to calculate all the other values on the Easter table starting from two basic values, year number 1 and the date of the first Easter moon (whereby the incorrect value in sector 12, line 7, 3rd cycle is corrected) and, with a slight modification of the algorithm, extend the calculation to all 532 years of a complete Easter cycle.
(Here Microsoft Excel 2007, German licence):
Field |
Contents |
Meaning |
---|---|---|
A1 |
Year |
Year number |
B1 |
Easter moon |
Day of the Easter moon counted from 1 March. |
C1 |
EM Day |
Dsy date of the Easter moon |
D1 |
EM Month |
Month of the Easter moon |
E1 |
Wkday 21 Mar |
Weekday of 21 March |
F1 |
Wkday EM |
Weekday of the Easter moon |
G1 |
Moon# ES |
Lunar month day of Easter Sunday |
H1 |
ES |
Day of Easter Sunday counted from 1 March |
I1 |
ES day |
Day date of Easter Sunday |
J1 |
ES month |
Month of Easter Sunday |
A2 |
1 |
1 |
B2 |
36 |
36 (first Easter moon on 5 April) |
C2 |
=IF(B2<=31;B2;B2-31) |
Day date of the Easter moon |
D2 |
=IF(B2<=31;3;4) |
Month of the Easter moon |
E2 |
=REST(INTEGER(5*(A2-1)/4);7) |
Weekday of 21 March |
F2 |
=REST(E2+(B2-21);7) |
Weekday of the Easter moon |
G2 |
=14+7-F2 |
Lunar month day of Easter Sunday |
H2 |
=B2+G2-14 |
Day of Easter Sunday counted from 1 March |
I2 |
=IF(H2<=31;H2;H2-31) |
Day date of Easter Sunday |
J2 |
=IF(H2<=31;3;4) |
Month of Easter Sunday |
A3 |
=A2+1 |
Year number |
B3 |
=IF(B2-11>=21;B2-11;B2+19) |
Day of the Easter moon counted from 1 March |
C3:J3 |
Copy of C2:J2 |
|
A4:J4 |
Copy from A3:J3 |
|
A5:J5 |
Copy from A3:J3 |
etc. up to A20:J20 |
A21 |
=A20+1 |
|
B22:J22 |
Copy of B21:J21 |
|
A23:J39 |
Copy of A3:J19 |
|
A40:J57 |
Copy of A21:J39 |
|
A58 |
Copy of A21:J39 |
etc. ad libitum |
Note: The counting of the weekdays W={"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"} from 0 to 6 is chosen so that W[5×J÷4 mod 7] in the Julian calendar results in the weekday of 21 March. This also results in the simplest calculation for reaching the Sunday following the Easter moon (see field G2).
function DaynumberToDayAndMonth( daynumber ) { // assert( daynumber > 0 && daynumber < 62 ); if ( daynumber <= 31 ) { this.dd = daynumber; this.mm = 3; } else { this.dd = daynumber - 31; this.mm = 4; } return this; } function RavennaEasterTableLine( annus, lunaXIV ) { // assert( annus > 0 && annus <= 9999 ); // assert( lunaXIV >= 21 && lunaXIV <= 50 ); var date; this.an = annus; this.weekday21 = Math.floor( 5 * ( annus - 1 ) / 4 ) % 7 ; // 5×J÷4 mod 7 this.om = lunaXIV; date = DaynumberToDayAndMonth( lunaXIV ); this.omdd = date.dd; this.ommm = date.mm; this.weekdayOM = ( weekday21 + lunaXIV - 21 ) % 7 ; // =REST(E2+(B2-21);7) this.lunaOS = 21 - this.weekdayOM; this.os = lunaXIV + 7 - this.weekdayOM; date = DaynumberToDayAndMonth( this.os ); this.osdd = date.dd; this.osmm = date.mm; return this; } const OsterMondStart = 36; var osterMond = OsterMondStart; function nextOsterMond( jj ) { var newOM = osterMond - 11; // =WENN(B2-11>=21;B2-11;B2+19) osterMond = ( jj % 19 ) ? ( newOM >= 21 ? newOM : newOM + 30 ) : OsterMondStart; return osterMond; } function RavennaEasterTable( annus, times ) { // assert( annus > 0 && annus < 9999 ); // assert( times >= 4 && times <= 532 ); for ( let j = annus; j < annus + times; j++ ) { var line = RavennaEasterTableLine( annus, nextOsterMond( annus - 1 ) ); generateRavennaEasterTableOutput( line ); } }
If you click on the button below, the summarised table of the reading of the Easter calendar stone shown above and a new calculation of the data generated according to the algorithm just developed with the JavaScript functions shown appear one after the other for comparison, whereby in this newly calculated table the first column with the Byzantine lunar year and the last column with the display of the lunar leap year are omitted as unnecessary for the calculation.
Lewin, Karl-Heinz (2005): Komputistik contra Phantomzeitthese. Führt der Computus Paschalis die Phantomzeitthese ad absurdum?; ZS 17 (2) 455-464; (22023): https://com-pas.de/computuspaschalis/1cyclopaschalisravenna.en.htm
Noris, Henricus (1691): Dissertatio de paschali latinorum cyclo, Ravenna (quoted from Voigt, 2003)
Spreti, Camillo (1796): De Cyclo Paschali Ravennate, in Desiderii Spreti Historici Ravennatis, De Amplitudine, Eversione et Restauratione Urbis Ravennae, Voluminis II, Pars Prima, pp. 277-317, Ravennae MDCCXCVI; https://archive.org/details/desideriispretih2pt1spre/page/302/mode/2up
Voigt, Ulrich (2003): Das Jahr im Kopf, Beiträge zur Mnemotechnik, Band 2; Likanas; Hamburg
ZS = Zeitensprünge (“Zeitensprünge”) – Interdisziplinäres Bulletin; Mantis Verlag Dr. Heribert Illig, Gräfelfing; http://www.zeitensprünge.de/?page_id=572
The author is a mathematician and worked as a software developer.
Karl-Heinz Lewin, Haar: Karl-Heinz.Lewin@t-online.de
Copyright © Karl-Heinz Lewin, 2023
Translated from a German version by DeepL with authoritative assistance by the author.